某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).(1)该植物从观察时
题型:不详难度:来源:
某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).
(1)该植物从观察时起,多少天以后停止长高? (2)求直线AC的解析式,并求该植物最高长多少厘米? |
答案
解:(1)∵CD∥x轴, ∴从第50天开始植物的高度不变。 答:该植物从观察时起,50天以后停止长高。 (2)设直线AC的解析式为y=kx+b(k≠0), ∵经过点A(0,6),B(30,12), ∴,解得。 ∴直线AC的解析式为y=x+6(0≤x≤50)。 当x=50时,y=×50+6=16。 答:直线AC的解析式为y=x+6(0≤x≤50),该植物最高长16cm。 |
解析
试题分析:(1)根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高。 (2)设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC的解析式,再把x=50代入进行计算即可得解。 |
举一反三
如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=900,∠BCO=450,BC=,点C的坐标为(-18,0).
(1)求点B的坐标; (2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式. |
△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0).
(1)如图1,当点C与点O重合时,求直线BD的解析式; (2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标; (3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C时,求∠ODB的正切值. |
某校实行学案式教学,需印制若干份数学学案。印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。两种印刷方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示:
(1)填空:甲种收费方式的函数关系式是 . 乙种收费方式的函数关系式是 . (2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算。 |
如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境: ①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米; ②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升; ③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0. 其中,符合图中所示函数关系的问题情境的个数为
A.0 B.1 C.2 D.3 |
若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是 . |
最新试题
热门考点