竹溪物流公司组织20辆汽车装运A、B、C三种竹溪特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据如表提供的信息,

竹溪物流公司组织20辆汽车装运A、B、C三种竹溪特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据如表提供的信息,

题型:不详难度:来源:
竹溪物流公司组织20辆汽车装运A、B、C三种竹溪特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据如表提供的信息,解答以下问题:
(1)设装运A种土特产的车辆数为x,装运B种土特产的车辆数为y,求y与x之间的函数关系式;
答案
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

竹溪土特产种类ABC
每辆汽车运载量(吨)865
每吨土特产获利(百元)121610
(1)由题意得:8x+6y+5(20-x-y)=120,
整理y=20-3x,
故y与x之间的函数关系式为y=20-3x;

(2)由x≥3,y=20-3x≥3,即20-3x≥3可得3≤x≤5
2
3

又∵x为正整数,
∴x=3,4,5.
故车辆的安排有三种方案,即:
方案一:A种3辆、B种11辆、C种6辆;
方案二:A种4辆、B种8辆、C种8辆;
方案三:A种5辆、B种5辆、C种10辆.
设此次销售利润为W百元,
W=8x•12+6(20-3x)•16+5[20-x-(20-3x)]•10=-92x+1920.
∵W随x的增大而减小,又x=3,4,5
∴当x=3时,W最大=1644(百元)=16.44万元.
答:要使此次销售获利最大,应采用方案一,即A种3辆,B种11辆,C种6辆,最大利润为16.44万元.
如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,且满足


OB-3
+|OA-1|=0.
(1)求点A、B的坐标;
(2)若OC=


3
,求点O到直线CB的距离;
(3)在(2)的条件下,若点P从C点出发以一个单位每秒的速度沿直线CB从点C到B的方向运动,连接AP.设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式.
某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量(  )
A.20kgB.25kgC.28kgD.30kg

如图,直线l的解析式为y=-
4
3
x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤3)
(1)求A、B两点的坐标;
(2)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S,试探究S与t之间的函数关系;
(3)当S=2时,是否存在点R,使△RNM△AOB?若存在,求出R的坐标;若不存在,请说明理由.
如图,直线y=
1
2
x+2
分别交x轴、y轴于点A、C,已知P是该直线在第一象限内的一点,PB⊥x轴于点B,S△APB=9.
(1)求△AOC的面积;
(2)求点P的坐标;
(3)设点R与点P在同一反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴于点T,是否存在点R使得△BRT与△AOC相似,若存在,求点R的坐标;若不存在,说明理由.
观察图形

上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为______.