大刚与爷爷沿相同的路线同时从山脚出发到达山顶的过程中,各自行进的路程随时间变化的图象如图10所示.请根据图象解答下列问题:(1)试写出在登山过程中,大刚行进的路

大刚与爷爷沿相同的路线同时从山脚出发到达山顶的过程中,各自行进的路程随时间变化的图象如图10所示.请根据图象解答下列问题:(1)试写出在登山过程中,大刚行进的路

题型:不详难度:来源:
大刚与爷爷沿相同的路线同时从山脚出发到达山顶的过程中,各自行进的路程随时间变化的图象如图10所示.请根据图象解答下列问题:
(1)试写出在登山过程中,大刚行进的路程S1(km)与时间t(h)的函数关系式;爷爷行进的路程S2(km)与时间t(h)的函数关系式;(都不要求写出自变量t的取值范围)
(2)当大刚到达山顶时,爷爷行进到出路上某点A处,求点A距山顶的距离;
(3)在(2)的条件下,设爷爷从A处继续登山,大刚到达山顶休息1h后沿原路下山,在距离山顶1.5km的B处与爷爷相遇,求大刚下山时的速度.
答案
(1)设S1=k1t,
∵点(2,6)在S1=k1t图象上,
∴6=2k1
解得:k1=3,
∴大刚行进的路程S1(km)与时间t(h)的函数关系式为:S1=3t;
设S2=k2t,
∵点(3,6)在S2=k2t图象上,
∴6=3k2
解得:k2=2,
∴爷爷行进的路程S2(km)与时间t(h)的函数关系式为S2=2t.

(2)∵大刚到达山顶所用时间为:
12
3
=4(h),
此时S2=8,12-8=4(km),
即爷爷距山顶的距离为4km.

(3)∵点B与山顶的距离为1.5km,
∴爷爷从山脚到达点B的路程=12-1.5=10.5km,
∴爷爷从山脚到达点B所用的时间为:10.5÷2=
21
4
(h),
∴大刚到达B处用时:5.25-5=0.25(h),
∴大刚下山时的速度是:
1.5
0.25
=6(km/h).
∴大刚下山时的速度是6km/h.
举一反三
如图,边长为2的正方形ABCD中,顶点A的坐标是(0,2),一次函数y=x+t的图象l随t的不同取值变化时,位于l的右下方由l和正方形的边围成的图形面积为S(阴影部分).
(1)当t何值时,S=3;
(2)在平面直角坐标系下,画出S与t的函数图象.
题型:不详难度:| 查看答案
如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足


a+3
+(p+1)2=0

(1)求直线AP的解析式;
(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;
(3)如图2,点B(-2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②
AO-EF
2DP
的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.
题型:不详难度:| 查看答案
一位旅行者在早晨8时出发到乡村,第一个小时走了5千米,然后他上坡,1个小时只走了3千米,以后就休息30分钟;休息后平均每小时走4千米,在中午12时到达乡村.根据右图回答问题:
(1)旅行者9时、10时、10时30分、11时离开城市的距离为多少?
(2)他停下来休息时离开城市的距离是多少?
(3)乡村离城市有多少路程?
(4)旅行者离开城市6千米、10千米、12千米、14千米的时间分别为多少?
题型:不详难度:| 查看答案
如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是(  )
A.B.C.D.
题型:不详难度:| 查看答案
星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图,是他们离家的路程y(千米)与时间x(时)的函数图象.已知小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时.
(1)小强家与游玩地的距离是多少?
(2)妈妈出发多长时间与小强相遇?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.