如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片.点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=4,点E为BC的中点,点N的坐标为(3,0),

如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片.点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=4,点E为BC的中点,点N的坐标为(3,0),

题型:期末题难度:来源:
如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片.点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=4,点E为BC的中点,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为EF,点F为折痕与y轴的交点.
(1)求点G的坐标;
(2)求折痕EF所在直线的解析式;
(3)设点P为直线EF上的点,是否存在这样的点P,使得以P,F,G为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
答案
解:(1)∵四边形ABCO是正方形,
∴BC=OA=4,
∵E为CB中点,
∴EB=2,
∵MN∥y轴,N(3,0),
∴MN⊥EB且MB=NA=1,
∴EM=1,而EG=EC=2,
∴sin∠EGM=
∴∠EGM=30°,
∴MG=EGcos30°=
∴G(3,4﹣);
(2)∴∠EGM=30°,
∴∠MEG=∠FEG=∠CEF=60°,
∴CF=CEtan60°=2
∴FO=4﹣2
∴F(0,4﹣2),E(2,4),
设直线EF的解析式:y=kx+b(k≠0),


∴折痕EF所在直线解析式:y=x+4﹣2
(3)P1(﹣,1﹣2),P2(1,4﹣),P3,7﹣2),P4(3,4+).

举一反三
已知一次函数物图象经过A(﹣2,﹣3),B(1,3)两点.
(1)求这个一次函数的解析式;
(2)试判断点P(﹣1,1)是否在这个一次函数的图象上.
题型:期末题难度:| 查看答案
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取:
(1)甲、乙两地之间的距离为  km;
(2)请解释图中点B的实际意义;图象理解:
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
题型:期末题难度:| 查看答案
某校举行“爱我临翔”书法比赛,打算购买10支毛笔和x本(x≥10)书法练习本作为奖品,现在到甲、乙两家文体超市了解到,同一种毛笔每支标价都为25元,书法练习本每本5元,两个超市各自有优惠办法:
甲超市:买一支毛笔赠送一本书法练习本;
乙超市:按购物金额打九折付款;
(1)若到甲超市购买,请写出在优惠条件下实际付款金额y(元)与书法练习本x(本)(x≥10)之间的函数关系式;
(2)若到乙超市购买,请写出在优惠条件下实际付款金额y(元)与书法练习本x(本)(x≥10)之间的函数关系式;
(3)试分析什么情况下到甲超市购买奖品更是优惠?
题型:广东省期末题难度:| 查看答案
某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟.图表示快递车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.
(1)请在图中画出货车距离A地的路程y(千米)与所用时间x(时)的函数图象;
(2)求两车在途中相遇的次数(直接写出答案);
(3)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?
题型:湖北省期末题难度:| 查看答案
某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)40cm的薄板,获得的利润是26元(利润=出厂价-成本价).
①求一张薄板的利润与边长之间满足的函数关系式;
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?
参考公式:抛物线的顶点坐标是.
题型:河北省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.