毕节市移动通讯公司开设了两种通讯业务,A类是固定用户:先缴50元基础费,然后每通话1分钟再付话费0.4元;B类是“神州行”用户:使用者不缴月租费,每通话1分钟会

毕节市移动通讯公司开设了两种通讯业务,A类是固定用户:先缴50元基础费,然后每通话1分钟再付话费0.4元;B类是“神州行”用户:使用者不缴月租费,每通话1分钟会

题型:期末题难度:来源:
毕节市移动通讯公司开设了两种通讯业务,A类是固定用户:先缴50元基础费,然后每通话1分钟再付话费0.4元;B类是“神州行”用户:使用者不缴月租费,每通话1分钟会话费0.6元(这里均指市内通话)。如果一个月内通话时间为x分钟,分别设A类和B类两种通讯方式的费用为y1元和y2元。
(1)分别写出y1、y2与x之间的函数关系式。
(2)一个月内通话多少分钟,用户选择A类不吃亏?一个月内通话多少分钟,用户选择B类不吃亏?
(3)若某人预计使用话费150元,他应选择哪种方式合算?
答案
解:(1)y1、y2与x之间的函数关系式分别为
(2)x≥250分钟,用户选择A类不吃亏,当一个月内通话x≤250分钟,用户选择B类不吃亏;
(3)如图可知若某人预计使用话费150元,他应选择A、B两种方式都同样合算。
举一反三
某长途汽车客运公司规定旅客可随身携带一定质量的行李.如果超过规定质量,那么需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数,根据图象回答下列问题:
(1)求旅客最多可免费携带行李的质量;
(2)求y与x之间的函数关系式;
(3)某旅客所买的行李票的费用为4~15元,求他所带行李的质量的范围。
题型:江苏期末题难度:| 查看答案
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=,点M是BC的中点,点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧,点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止,设点P,Q运动的时间是t秒(t>0)。

(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由。
题型:重庆市期末题难度:| 查看答案
测得一根弹簧的长度与所挂物体重量的关系如下列一组数据,重物不超过20千克时,在去掉重物后,弹簧能恢复原状。

用字母表示弹簧长度与所挂物体重量的关系是(    )。
题型:湖南省期末题难度:| 查看答案
在平面直角坐标系中,直线y=kx+b(k为常数且k≠0)分别交x轴、y轴于点A、B,⊙O半径为个单位长度,如图,若点A在x轴负半轴上,点B在y轴正半轴上,且OA=OB。
①求k的值;
②若点P为线段AB上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,当PC⊥PD时,求点P的坐标。

题型:江苏期中题难度:| 查看答案
阅读下面的材料,并解答问题:
(1)问题1:已知正数,有下列命题
若a+b=2,则
若a+b=3,则
若a+b=6,则
根据以上三个命题所提供的规律猜想:若a+b=9,则≤______;
以上规律可表示为:a+b______
(2)问题2:建造一个容积为8立方米,深2米的长方形无盖水池,池底和池壁的造价分别为每平方米120元和80元。
①设池长为x米,水池总造价为y(元),求y和x的函数关系式;
②利用“问题1”题中得出的规律和结论,求水池的最低造价。
题型:江苏期中题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.