分析:作CE⊥x轴于E,DF⊥y轴于F,由直线的解析式为y=-x+m,易得A(0,m),B(m,0),得到△OAB等腰直角三角形,则△ADF和△CEB都是等腰直角三角形,设M的坐标为(a,b),则ab= , 并且CE=b,DF=a,则AD= DF= a,BC= CE= b,于是得到AD?BC= a? b="2ab=2" . 解:作CE⊥x轴于E,DF⊥y轴于F,如图, 对于y=-x+m, 令x=0,则y=m;令y=0,-x+m=0,解得x=m, ∴A(0,m),B(m,0), ∴△OAB等腰直角三角形, ∴△ADF和△CEB都是等腰直角三角形, 设M的坐标为(a,b),则ab=, CE=b,DF=a, ∴AD=DF=a,BC=CE=b, ∴AD?BC=a?b=2ab=2. 故答案为2. |