解:(1)∵点A(﹣2,2)在双曲线y=上, ∴k=﹣4, ∴双曲线的解析式为y=﹣, ∵BC与x轴之间的距离是点B到y轴距离的4倍, ∴设B点坐标为(m,﹣4m)(m>0)代入双曲线解析式得m=1, ∴抛物线y=ax2+bx+c(a<0)过点A(﹣2,2)、B(1,﹣4)、O(0,0), ∴, 解得:, 故抛物线的解析式为y=﹣x2﹣3x; (2)∵抛物线的解析式为y=﹣x2﹣3x, ∴顶点E(﹣,),对称轴为x=﹣, ∴B(1,﹣4), ∴﹣x2﹣3x=﹣4, 解得:x1=1,x2=﹣4, ∴C(﹣4,﹣4), ∴S△ABC=5×6×=15, 由A、B两点坐标为(﹣2,2),(1,﹣4)可求得直线AB的解析式为:y=﹣2x﹣2, 设抛物线的对称轴与AB交于点F,则F点的坐标为(﹣,1), ∴EF=﹣1=, ∴S△ABE=S△AEF+S△BEF=××3=; (3)S△ABE=, ∴8S△ABE=15, ∴当点D与点C重合时,显然满足条件; 当点D与点C不重合时,过点C作AB的平行线CD,其对应的一次函数解析式为y=﹣2x﹣12, 令﹣2x﹣12=﹣x2﹣3x, 解得x1=3,x2=﹣4(舍去), 当x=3时,y=﹣18, 故存在另一点D(3,﹣18)满足条件. 综上可得点D的坐标为(3,﹣18)或(﹣4,﹣4).
|