如图,直线y=x+m与抛物线y=x2-2x+l交于不同的两点M、N(点M在点N的左侧).(1)设抛物线的顶点为B,对称轴l与直线y=x+m的交点为C,连结BM、

如图,直线y=x+m与抛物线y=x2-2x+l交于不同的两点M、N(点M在点N的左侧).(1)设抛物线的顶点为B,对称轴l与直线y=x+m的交点为C,连结BM、

题型:不详难度:来源:
如图,直线y=x+m与抛物线y=x2-2x+l交于不同的两点M、N(点M在点N的左侧).
(1)设抛物线的顶点为B,对称轴l与直线y=x+m的交点为C,连结BM、BN,若S△MBC=S△NBC,求直线MN的解析式;
(2)在(1)条件下,已知点P(t,0)为x轴上的一个动点,
①若△PMN为直角三角形,求点P的坐标.
②若∠MPN>90°,则t的取值范围是     

答案
(1)直线MN的解析式为y=x+1;
(2)①若∠NMP1=90°,则△MOP1∽△FOM,P1的坐标为(,0);
若∠NMP2=90°,过N作NH⊥x轴于H,则△NHP2∽△FOM,P2的坐标为(,0);
若∠MP3N=90°,则△MOP3∽△FOM,P3的坐标为(,0);
<t<
解析

试题分析:(1)设点M(x1,y1),N(x2,y2),过点M、N分别作MD⊥BC,NE⊥BC,垂足为D、E,根据已知条件可求出m的值,进而得到直线解析式;
(2)①由(1)知M(0,1),N(5,),设直线MN的解析式y=x+1与x轴的交点为F,因为直角三角形的斜边不确定,所以要分三种情况分别讨论,求出符合题意的t值,即可求出P的坐标;②由①可知当若∠MPN=90°,P的坐标,进而可求出∠MPN>90°,则t的取值范围.
试题解析:(1)设点M(x1,y1),N(x2,y2),由,可得x2﹣5x+2﹣2m=0,
则x1+x2=5①,x1•x2=2﹣2m②.
过点M、N分别作MD⊥BC,NE⊥BC,垂足为D、E.
∵SMBC=SNBC
∴MD=NE,即2﹣x1=(x2﹣2),
∴x1=﹣x2+ ③,
③代入①,得x2=5,x1=0,
代入②,得m=1,
∴直线MN的解析式为y=x+1;
(2)①由(1)知M(0,1),N(5,),设直线MN的解析式y=x+1与x轴的交点为F(﹣2,0).
若∠NMP1=90°,则△MOP1∽△FOM,

∴t=
∴P1的坐标为(,0);
若∠NMP2=90°,过N作NH⊥x轴于H,则△NHP2∽△FOM,

∴t=
∴P2的坐标为(,0);
若∠MP3N=90°,则△MOP3∽△FOM,

∴2t2﹣10t+7=0,
解得:t=
∴P3的坐标为(,0);
②由①可知P3的坐标为(,0),
∵∠MPN>90°,
<t<

举一反三
将二次函数化为的形式,下列结果正确的是[(   )]
A.B.
C.D.

题型:不详难度:| 查看答案
如图,抛物线经过A、C(0,4)两点,与x轴的另一交点是B.
(1)求抛物线的解析式;
(2)若点在第一象限的抛物线上,求点D关于直线BC的对称点的坐标;
(3)在(2)的条件下,过点D作DE⊥BC于点E,反比例函数的图象经过点E,点在此反比例函数图象上,求的值.

题型:不详难度:| 查看答案
在矩形ABCD中,AB=2,BC=6,点E为对角线AC的中点,点P在边BC上,连接PE、PA.当点P在BC上运动时,设BP=x,△APE的周长为y,下列图象中,能表示y与x的函数关系的图象大致是(   )

A. B.  C.  D.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,二次函数的图象经过(,0)和(,0)两点.
(1)求此二次函数的表达式.
(2)直接写出当<x<1时,y的取值范围.
(3)将一次函数 y=(1-m)x+2的图象向下平移m个单位后,与二次函数图象交点的横坐标分别是a和b,其中a<2<b,试求m的取值范围.

题型:不详难度:| 查看答案
二次函数的图象如图所示.当y<0时,自变量x的取值范围是(    ).
A.-1<x<3
B.x<-1
C.x>3
D.x<-1或x>3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.