如图,在平面直角坐标系中,矩形的边在轴上,且,,直线经过点,交轴于点.(1)点、的坐标分别是(       ),(       );(2)求顶点在直线上且经过点

如图,在平面直角坐标系中,矩形的边在轴上,且,,直线经过点,交轴于点.(1)点、的坐标分别是(       ),(       );(2)求顶点在直线上且经过点

题型:不详难度:来源:
如图,在平面直角坐标系中,矩形的边轴上,且,直线经过点,交轴于点
(1)点的坐标分别是       ),       );
(2)求顶点在直线上且经过点的抛物线的解析式;
(3)将(2)中的抛物线沿直线向上平移,平移后的抛物线交轴于点,顶点为点.求出当时抛物线的解析式.

答案
(1) C(4,2),D(1,2);(2);(3)y=(x﹣2.
解析

试题分析:(1)根据题意可得点C的纵坐标为3,代入直线解析式可得出点C的横坐标,继而也可得出点D的坐标;
(2)由题意可得点C和点D关于抛物线的对称轴对称,从而得出抛物线的对称轴为x=,再由抛物线的顶点在直线y=x−2上,可得出顶点坐标为(),设出顶点式,代入点C的坐标即可得出答案.
试题解析:(1)C(4,2),D(1,2
(2)由二次函数对称性得,顶点横坐标为
令x=,则
∴顶点坐标为(),
∴设抛物线解析式为,把点D(1,)代入得,
∴解析式为
(3)设顶点E在直线上运动的横坐标为m,则E(m,
∴可设解析式为
当GE=EF时,FG=m,则F(0,m﹣),
代入解析式得:m2+m﹣=m﹣
解得m=0(舍去),m=
此时所求的解析式为:y=(x﹣2
举一反三
二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是(     )
A.k<-3B.k>-3C.k<3D.k>3

题型:不详难度:| 查看答案
二次函数的顶点坐标为          .
题型:不详难度:| 查看答案
矩形纸片ABCD中,AB=5,AD=4.
(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).

题型:不详难度:| 查看答案
如图,二次函数的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为 ,求点M的坐标.

题型:不详难度:| 查看答案
已知抛物线y=x2+bx+c过点(-6,-2),与y轴交于点C,且对称轴与x轴交于点B(-2,0),顶点为A.
(1)求该抛物线的解析式和A点坐标;
(2)若点D是该抛物线上的一个动点,且使△DBC是以B为直角顶点BC为腰的等腰直角三角形,求点D坐标;
(3)若点M是第二象限内该抛物线上的一个动点,经过点M的直线MN与y轴交于点N,是否存在以O、M、N为顶点的三角形与△OMB全等?若存在,请求出直线MN的解析式;若不存在,请说明理由.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.