已知二次函数y=ax2+bx+c图象的一部分如图,则a的取值范围是____ __.
题型:不详难度:来源:
已知二次函数y=ax2+bx+c图象的一部分如图,则a的取值范围是____ __.
|
答案
-1<a<0. |
解析
试题分析:函数y=ax2+bx+c的图象开口向下可知a小于0,由于抛物线顶点在第二象限即抛物线对称轴在y轴左侧,当x=-1时,抛物线的值必大于0由此可求出a的取值范围. 由图象可知:a<0, 图象过点(0,1),所以c=1, 图象过点(1,0),则a+b+1=0, 当x=-1时,应有y>0,则a-b+1>0, 将a+b+1=0代入,可得a+(a+1)+1>0, 解得a>-1, 所以,实数a的取值范围为-1<a<0. |
举一反三
已知抛物线y=x2-2kx+3k+4. (1)顶点在y轴上时,k的值为_________. (2)顶点在x轴上时,k的值为_________. (3)抛物线经过原点时,k的值为_______. |
如图,直线y=3x和y=2x分别与直线x=2相交于点A、B,将抛物线y=x2沿线段OB移动,使其顶点始终在线段OB上,抛物线与直线x=2相交于点C,设△AOC的面积为S,求S的取值范围.
|
当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②, 所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④. 当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化. 将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1; 根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______. (2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式. |
已知二次函数 (1)求证:不论a为何实数,此函数图象与x轴总有两个交点. (2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式. (3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。 |
如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式. (2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D. ①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标; ②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变. 当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号) |
最新试题
热门考点