某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做
题型:不详难度:来源:
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500. (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分) (2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分) (3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分) |
答案
(1)35;(2)30或40;(3)3600. |
解析
试题分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,根据利润=(定价-进价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据函数解析式,利用一次函数的性质求出最低成本即可. 试题解析:(1)由题意得出: , ∵, ∴当销售单价定为35元时,每月可获得最大利润. (2)由题意,得:, 解这个方程得:x1=30,x2=40. ∴李明想要每月获得2000元的利润,销售单价应定为30元或40元. (3)∵,∴抛物线开口向下. ∴当30≤x≤40时,W≥2000. ∵x≤32,∴当30≤x≤32时,W≥2000. 设成本为P(元),由题意,得:, ∵k=200<0,∴P随x的增大而减小. ∴当x=32时,P最小=3600. 答:想要每月获得的利润不低于2000元,每月的成本最少为3600元. |
举一反三
如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数解析式;(3分) (2)求过A、B、C三点的抛物线的函数关系式;(6分) (3)请你利用所求抛物线的图像回答:当x取何值时,抛物线中的部分图像落在x轴的上方? (3分) |
如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.
(1)求C点的坐标及抛物线的解析式;(6分) (2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(4分) (3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由. (4分) |
若直线在第二、四象限都无图像,则抛物线( )A.开口向上,对称轴是y轴 | B.开口向下,对称轴平行于y轴 | C.开口向上,对称轴平行于y轴 | D.开口向下,对称轴是y轴 |
|
若二次函数的图象与x轴有两个交点,坐标分别为(,0),(,0),且,图象上有一点M()在x轴下方,则下列判断中正确的是( ). |
已知二次函数. (1)求出该函数图象的顶点坐标,图象与x轴的交点坐标. (2)当x在什么范围内时,y随x的增大而增大? (3)当x在什么范围内时,? |
最新试题
热门考点