如图,四边形ABCD是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运

如图,四边形ABCD是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运

题型:不详难度:来源:
如图,四边形ABCD是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.

小题1:求抛物线的解析式;
小题2:若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
小题3:当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?
答案

小题1:∵四边形ABCD是平行四边形,
∴OC=AB=4.
∴A(4,2),B(0,2),C(-4,0).
∵抛物线y=ax2+bx+c过点B,∴c=2.
由题意,有 解得
∴所求抛物线的解析式为
小题2:将抛物线的解析式配方,得
∴抛物线的对称轴为x=2.
∴D(8,0),E(2,2),F(2,0).
欲使四边形POQE为等腰梯形,则有OP=QE.即BP=FQ.
∴t=6-3t,即t=

小题3:欲使以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,
∵∠PBO=∠BOQ=90°,∴有
即PB=OQ或OB2=PB·QO.
①若P、Q在y轴的同侧.当PB=OQ时,t=8-3t,∴t=2.
当OB2=PB·QO时,t(8-3t)=4,即3t2-8t+4=0.
解得
②若P、Q在y轴的异侧.当PB=OQ时,3t-8=t,∴t=4.
当OB2=PB·QO时,t(3t-8)=4,即3t2-8t-4=0.解得
∵t=<0.故舍去,∴t=
∴当t=2或t=或t=4或t=秒时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似.  
解析
(1)根据AB、OB的长,即可得到A、B点的坐标;由于四边形ABCO是平行四边形,则AB=OC,由此可求出OC的长,即可得到C点的坐标,进而可用待定系数法求出抛物线的解析式;
(2)根据抛物线的解析式可求出D点的坐标及抛物线的对称轴方程,进而可求出E、F的坐标;若四边形POQE是等腰梯形,则OP=EQ,而OB=EF,可得BP=FQ,根据这个等量关系即可求出t的值;
(3)由于∠PBO、∠QOB都是直角,对应相等,若以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,则有两种情况:
①P、Q在y轴同侧,②P、Q在y轴两侧;
每种情况又分为△PBO∽△QOB(此时两者全等),△PBO∽△BOQ两种情况;根据不同的相似三角形所得到的不同的比例线段即可求出t的值.
举一反三
如图,某农户想利用自家院子一面墙和20米长的篱笆围成一个矩形养鸡场,并留出一个1米宽的口子用来进出.
小题1:若围成的养鸡场面积为,求围成的养鸡场的长和宽;
小题2:请用配方法,求出能围成的矩形养鸡场的最大面积,并说明设计方案.
题型:不详难度:| 查看答案
如图,已知一次函数的图象与轴交于点A,与二次函数的图象交于轴上的一点B,二次函数的图象与轴只有唯一的交点C,且OC=2.

小题1:求二次函数的解析式;
小题2:设一次函数的图象与二次函数的图象的另一交点为D,已知P为轴上的一个动点,且△PBD为直角三角形,求:点P的坐标.
题型:不详难度:| 查看答案
已知抛物线经过及原点
小题1:求抛物线的解析式.
小题2:过点作平行于轴的直线轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线点,直线与直线及两坐标轴围成矩形(如图).是否存在点,使得相似?若存在,求出点的坐标;若不存在,请说明理由
小题3:如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?
题型:不详难度:| 查看答案
在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(-1,0),点C的坐标为(3,0),点M是△ABC外接圆的圆心

小题1:求经过A、B、C三点的抛物线的解析式及点M的坐标;
小题2:设抛物线的顶点为D,Q是直线CD上一动点,请直接写出以A、D、M、Q为顶点的四边形为平行四边形时的点Q的坐标;
小题3:在抛物线上找求点P,使△PAB的面积与△MCD的面积之比为2:3,并求出点P的坐标.
题型:不详难度:| 查看答案
如图, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点 出发以每秒2个单位长度的速度向运动;点同时出发,以每秒1个单位长度的速度向运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点垂直轴于点,连结AC交NP于Q,连结MQ.

小题1:点     (填M或N)能到达终点;
小题2:求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
小题3:是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,
说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.