(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可. (2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式. (3)将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形. (4)根据O、E、A、F为顶点的四边形能否为平行四边形,利用平行四边形的性质得出即可. 解:(1)因为抛物线的对称轴是x=, 设解析式为y=a(x-)2+k. 把A(6,0),B(0,4)两点坐标代入上式,得 , 解得a=,k=-. 故抛物线解析式为y=(x-)2-,顶点为( ,-). (2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x-)2-, ∴y<0, 即-y>0,-y表示点E到OA的距离. ∵OA是四边形OEAF的对角线, ∴S=2S△OAE=2××OA?|y|=-6y=-4(x-)2+25. 因为抛物线与x轴的两个交点是(1,0)和(6,0), 所以自变量x的取值范围是1<x<6. |