若二次函数,当时,y随x的增大而减小,则m的取值范围是(  )A.B.C.D.

若二次函数,当时,y随x的增大而减小,则m的取值范围是(  )A.B.C.D.

题型:不详难度:来源:
若二次函数,当时,y随x的增大而减小,则m的取值范围是(  )
A.B.C.D.

答案
C
解析
分析:根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.
解答:解:∵二次函数的解析式y=(x-m)2-1的二次项系数是1,
∴该二次函数的开口方向是向上;
又∵该二次函数的图象的顶点坐标是(m,-1),
∴该二次函数图象在x<m上是减函数,即y随x的增大而减小,且对称轴为直线x=m,
而已知中当x≤1时,y随x的增大而减小,
∴x≤1,
∴m≥1.
故选C.
举一反三
如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(),B(),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.

题型:不详难度:| 查看答案
已知拋物线,当时,y的最大值是(  )
A.2B.C.D.

题型:不详难度:| 查看答案
已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B的坐标;
(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;
(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,点A的坐标为(1,,△AOB的面积是
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形.使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
(2011•桂林)已知二次函数的图象如图.
(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.