今有网球从斜坡O点处抛出,网球的抛物线是y=4x-12x2的图象的一段,斜坡的截线OA在一次函数y=12x的图象的一段,建立如图所示的直角坐标系.求:(1)网球

今有网球从斜坡O点处抛出,网球的抛物线是y=4x-12x2的图象的一段,斜坡的截线OA在一次函数y=12x的图象的一段,建立如图所示的直角坐标系.求:(1)网球

题型:不详难度:来源:
今有网球从斜坡O点处抛出,网球的抛物线是y=4x-
1
2
x2
的图象的一段,斜坡的截线OA在一次函数y=
1
2
x
的图象的一段,建立如图所示的直角坐标系.
求:(1)网球抛出的最高点的坐标.
(2)网球在斜坡的落点A的垂直高度.
答案
(1)∵y=4x-
1
2
x2=-
1
2
(x-4)2+8,
∴网球抛出的最高点的坐标为(4,8);

(2)根据题意得:当4x-
1
2
x2=
1
2
x时,抛物线与直线OA相交于A,
解得:x=0或x=7,
当x=7时,y=
1
2
×7=
7
2

∴网球在斜坡的落点A的垂直高度为
7
2
举一反三
某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)
(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;
(2)桥洞两侧壁上各有一盏景观灯E、F,两灯直射地面分别形成反光点H、G(E、F分别在抛物线上且关于OC对称,H、G在线段AB上),量得矩形EFGH的周长为27.5米,现公园管理人员对拱桥加固维修,在点H、G处搭建一个高3.5米的矩形“脚手架”GHMN,已知“脚手架”最高处距景观灯至少为0.35米可保证安全,请问该“脚手架”的安装是否符合要求?如果符合,请说明理由;如果不符合,求出脚手架至少应调低多少米?
题型:不详难度:| 查看答案
如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
.)
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

x-3-2-101
y-60406
某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;
(2)求y与x之间的二次函数关系式;
(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;
(4)请把(2)中所求出的二次函数配方成y=a(x+
b
2a
2+
4ac-b2
4a
的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?
某商家经销一种绿茶,已知绿茶每千克成本50元,在试销时间内发现:
单价定为每千克70元时,月销售量为l00千克,销售单价每提高5元,月销量减少10,设该绿茶的销售单价为每千克x元(x≥70),月销售利润为y(元).
(1)求y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)若用于装修门面已投资3000元,该商家在第一个月里,销售单价为每千克85元,在第二个月里受物价部门干预,销售单价不得高于90元,在第二个月销售结束后发现这两个月不仅收回投资,而且刚好获得1700元的利润,求第二个月时该绿茶的销售单价为多少元?