数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.“等周问题”虽然较为繁杂,但其根本思想基于下面2

数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.“等周问题”虽然较为繁杂,但其根本思想基于下面2

题型:不详难度:来源:
数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.
“等周问题”虽然较为繁杂,但其根本思想基于下面2个事实:
事实1:等周长n边形的面积,当图形为正n边形时,其面积最大;
事实2:等周长n边形的面积,当边数n越大时,其面积也越大.
为了理解这些事实的合理性,曙光数学小组走出校门展开了下列课题研究.请你帮助他们解决其中的一些问题.
现有长度为100m的篱笆(可弯曲围成一个区域).
(1)如果用篱笆围成一个长方形鸡场,怎样围才能使鸡场的面积最大?为什么?
(2)如果用篱笆围成一个正五边形鸡场,那么与(1)中的正方形鸡场比较,哪个面积更大?请在事实1的基础上证明事实2:“等周长n边形的面积,当边数n越大时,其面积也越大.”
(3)利用事实1和事实2,请对“等周问题”的重要结论作出较为合理的解释.
(4)爱动脑筋的小明提出一个问题:如果借用一条充分长的直墙,将篱笆围成一个四边形鸡场,为了使鸡场的面积尽量大,所围成的长方形鸡场的长是宽的2倍(如图).你觉得他讲的是否有道理?你有没有更好的方法,使围成的四边形鸡场的面积更大?如果有,请说明你的方法.
答案
(1)设长为xm,宽为(50-x)m,则S=x•(50-x)=-(x-25)2+625,所以当每条边长为25m时,才能使长方形鸡场的面积最大;

(2)正五边形鸡场面积更大;
对于事实2,我们给出下述证明:

如图1、2,设正n边形A1A2An与正(n+1)边形A1A2An+1的周长相等,下面我们证明SA1A2AnSA1A2An+1.在边A1A2上任取一点(异于点A1、A2),这样我们可以把A1A2An看成是(n+1)边形A1CA2An,但它显然不是正(n+1)边形,它的周长与正(n+1)边形A1A2An+1的周长相等,根据事实1,SA1CA2AnSA1A2An+1,即SA1A2AnSA1A2An+1
所以,等周长n边形的面积,当边数n越大时,其面积也越大;

(3)在周长相同的情况下,曲线围成正多边形面积较大;
正多边形的边数越大,图形越接近于圆,面积也越大,当边数无限增大时,正多边形无限地接近于圆,面积越来越接近于一个固定的值,这个值就是所围成的圆的面积;

(4)他讲的有道理.
设宽为xm,长为(100-2x)m,
则S=x•(100-2x)=-2(x-25)2+1250,
所以当长为宽的2倍时,才能使长方形鸡场的面积最大.
有更好的方法:

如图4,如果将图1中的点A、D分别向外移动.
那么ABCD仍然是四边形,而将四边形沿墙反射过来,这样就得到一个新的封闭六边形BCDC′B′A,它的周长等于原篱笆长度的两倍.
所以当六边形BCDC′B′A为正六边形,即AB=BC=CD,且∠BAD=∠CDA=60°,∠ABC=∠DCB=120°时,六边形BCDC′B′A的面积最大.
因而其一半即四边形ABCD的面积也最大.由于周长相等,
因此图4中正六边形BCDC′B′A的面积大于图3中正方形BCC′B′的面积,
所以图4中四边形ABCD的面积大于图3中四边形ABCD的面积.
举一反三
在平面直角坐标系中,已知抛物线y=-
1
2
x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究
PQ
NP+BQ
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在直角坐标系中,OA=OC,AB=4,tan∠BCO=
1
5
,二次函数y=ax2+bx+c图象经过A、B、C三点.
(1)求A,B,C三点的坐标;
(2)求二次函数的解析式;
(3)求过点A、B和抛物线顶点D的圆的半径.
题型:不详难度:| 查看答案
如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为(  )
A.-
2
3
B.-


2
3
C.-2D.-
1
2

题型:不详难度:| 查看答案
新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A,B,C的横坐标分别为4,10,12.
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?
题型:不详难度:| 查看答案
如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为4


3
,PC=8


3
,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当x=


3
时,求tanB的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.