某旅游胜地欲开发一座景观山.从山的侧面进行勘测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚(点C)的水平线为x轴、过山顶(点A)的铅垂线为y轴建立平面直角坐标系如图(单位:百米).已知AB所在抛物线的解析式为y=-x2+8,BC所在抛物线的解析式为y=(x-8)2,且已知B(m,4). (1)设P(x,y)是山坡线AB上任意一点,用y表示x,并求点B的坐标; (2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图). ①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么? (3)在山坡上的700米高度(点D)处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E处,OE=1600(米).假设索道DE可近似地看成一段以E为顶点、开口向上的抛物线,解析式为y=(x-16)2.试求索道的最大悬空高度. |