如图,已知抛物线y=ax2-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E

如图,已知抛物线y=ax2-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E

题型:不详难度:来源:
如图,已知抛物线y=ax2-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作∠OEF=45°,射线ET交线段OB于点F.
(1)求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:∠BEF=∠COE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
答案
(1)∵点A的坐标是(-1,0),则AO=1,OC=3OA=3,
∴C为(0,-3)
∵抛物线过(-1,0)和(0,-3)





a+2a+c=0
c=-3





a=1
c=-3

∴此抛物线函数表达式为:y=x2-2x-3,
∵y=x2-2x-3=(x-3)(x+1),
∴B点坐标为:(3,0),
设BC直线解析式为:y=kx+b,





b=-3
3k+b=0

解得:





k=1
b=-3

直线BC的解析式:y=x-3;

(2)∵OB=OC=3
∴∠OCB=∠OBC=45°
又∵∠OEF+∠BEF=∠COE+∠OCB
且∠OEF=45°
∴∠BEF=∠COE;

(3)①∵∠OFE=∠BEF+∠OBC>45°
∴∠OFE>∠OEF
∴OE>OF即OE≠OF.
②当OE=EF时,
在△COE和△BEF中





∠BEF=∠COE
∠OCE=∠EBF
OE=EF

∴△COE≌△BEF(AAS),
∴BE=CO=3.
过E作ED⊥x轴于D.
∴ED=BD=BEcos45°=
3


2
2

∴OD=3-
3


2
2

∴E为(3-
3


2
2
,-
3


2
2
);
③当OF=EF时,则∠FOE=∠OEF=45°
∴∠OFE=90°.∴EF⊥OB.
∴E为BC的中点,∴E为(
3
2
,-
3
2
)


(4)对称轴为x=1,
∴P为(1,-2).
①AP为边,
此时P点纵坐标为2或-2,
令x2-2x-3=2
即x2-2x-5=0
∴x1=1+


6
,x2=1-


6

∴N为(1+


6
,2)或(1-


6
,2),
故M为(3+


6
,0)或(3-


6
,0),
令x2-2x-3=-2
即x2-2x-1=0,
∴x1=1+


2
,x2=1-


2

∴N为(1+


2
,2)或(1-


2
,2),
故M为(-1+


2
,0)或(-1-


2
,0),
②AP为对角线,
设M为(x,0)
则N为(-x,-2)
∴x2+2x-3=-2
x2+2x-1=0
∴x1=-1+


2
,x2=-1-


2

故M为(-1+


2
,0)或(-1-


2
,0),
综上所述:M为(3+


6
,0)或(3-


6
,0)或(-1+


2
,0)或(-1-


2
,0).
举一反三
某海参养殖公司经市场调研发现,每周该公司销售的海参量y(千克)与单价x(元/千克)之间存在如图所示的一次函数关系.
(1)根据图象求y与x之间的函数表达式;
(2)从经济效益来看,你认为该公司如何制定海参单价,能使每周海参的销售收入最高?每周海参的最高销售收入是多少?
题型:不详难度:| 查看答案
如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,BC与抛物线的对称轴交于点E.
(1)求点B、点C的坐标和抛物线的对称轴;
(2)求直线BC的函数关系式;
(3)点P为线段BC上的一个动点,过点P作PFDE交抛物线于点F.设点P的横坐标为m;用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为


5
.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=
1
4
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.
题型:不详难度:| 查看答案
如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到210平方米?说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.