心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y

心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y

题型:不详难度:来源:
心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.
(1)若用10分钟提出概念,学生的接受能力y的值是多少?
(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.
答案
(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×102+2.6×10+43=59.
(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4,
∴用8分钟与用10分钟相比,学生的接受能力减弱了;
当x=15时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5.
∴用15分钟与用10分钟相比,学生的接受能力增强了.
举一反三
商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.
①设每件降价x元,每天盈利y元,列出y与x之间的函数关系式;
②每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
题型:不详难度:| 查看答案
如果二次函数y=x2-2x+c的图象经过点(1,2),求这个二次函数的解析式,并写出该函数图象的对称轴.
题型:不详难度:| 查看答案
如果周长为20的长方形一边长为x,那么它的面积y关于x的函数解析式为______.
题型:不详难度:| 查看答案
y=ax2+bx+c图象与x轴交于A、B与y轴交于C,OA=2,OB=1,OC=1,求函数解析式.(求出所有可能的情况)
题型:不详难度:| 查看答案
某公司经销一种成本为10元/件的产品,经市场调查发现,在一段时间内,销售量y(件)随销售单价x(元)的变化而变化,其函数关系式为y=-10x+700,设这种产品在这段时间内的销售利润为w(元),解答下列问题:
(1)求销售利润w与销售单价x之间的函数关系式;
(2)当x为何值时,w的值最大?最大是多少?
(3)若物价部门规定此产品的销售单价最高不超过35元/件,那么销售单价定为多少时,销售利润最大?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.