已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.

已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.

题型:期末题难度:来源:
已知函数y=x2+bx-1的图象经过点(3,2)
(1)求这个函数的解析式;
(2)画出它的图象,并指出图象的顶点坐标;
(3)当x>0时,求使y≥2的x的取值范围.
答案
解:(1)函数y=x2+bx-1的图象经过点(3,2),
∴9+3b-1=2,解得b=-2;
∴函数解析式为y=x2-2x-1.
(2)y=x2-2x-1=(x-1)2-2;
如图:图象的顶点坐标为(1,﹣2);
(3)当x=3时,y=2,根据图象知,当x≥3时,y≥2;
∴当x>0时,使y≥2的x的取值范围是x≥3.
举一反三
已知抛物线y=ax2+bx+c经过A(-1,0),B(2,-3),C(3,0)三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,E是抛物线上的点,并且满足△AEC的面积是△ADC面积的3倍,求点E的坐标;
(3)设点M是抛物线上,位于x轴的下方,且在对称轴左侧的一个动点,过M作x轴的平行线,交抛物线于另一点N,再作MQ⊥x轴于Q,NP⊥x轴于P.试求矩形MNPQ周长的最大值.
题型:期末题难度:| 查看答案
如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h,已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围。
题型:中考真题难度:| 查看答案
如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点。
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)。
题型:中考真题难度:| 查看答案
如图所示,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C (-2,6 )。
(1)求经过A、B、C、三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问:以A、B、F为顶点的三角形与△ABC相似吗?
题型:中考真题难度:| 查看答案
如图所示,在平面直角坐标系中,直线l:y=-2x+b(b≥0)的位置随b的不同取值而变化。
(1)已知⊙M的圆心坐标为(4,2),半径为2。
当 b=             时,直线l:y= -2x + b (b≥0)经过圆心M;
当 b=             时,直线l:y= -2x + b (b≥0)与⊙M相切;
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2)。设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式。
题型:中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.