抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积= _________ 。
题型:四川省月考题难度:来源:
抛物线y=x2﹣4x+3与x轴交于A、B,与y轴交于C,则△ABC的面积= _________ 。 |
答案
1 |
举一反三
已知抛物线y=ax2+bx+c(a≠0)与x轴的两交点的横坐标分别是﹣1和3,与y轴交点的纵坐标是﹣; (1)确定抛物线的解析式; (2)说出抛物线的开口方向,对称轴和顶点坐标. |
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天可销售90箱,价格每提高1元,平均每天少销售3箱.设销售价为x(元/箱)。 (1)平均每天销售量是多少箱?(用含x的代数式表示) (2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? |
把一个物体以20m/s的速度竖直上抛,该物体在空中的高度h(m)与时间t(s)满足关系h=20t﹣5t2,当h=20m时,物体的运动时间为( )s. |
已知:如图,二次函数y=ax2﹣2ax+c(a≠0)的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0). (1)求该二次函数的关系式; (2)写出该二次函数的对称轴和顶点坐标; (3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标; (4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由. |
|
如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6. (1)求二次函数的解析式; (2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; (3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. |
|
最新试题
热门考点