已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥B

已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥B

题型:竞赛题难度:来源:
已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.
答案
解:∵抛物线中,
a′=﹣,b′=b,c′=c,
∴点P的横坐标为:﹣=3b,纵坐标为:=b2+c,
∴点P的坐标为
令x=0,则y=c,
∴点C(0,c),
设△ABC的外接圆的圆心为D,则点P和点D都在线段AB的垂直平分线上,设点D的坐标为(3b,m).
显然,x1,x2是一元二次方程的两根,

又∵AB的中点E的坐标为(3b,0),
∴AE=
∵PA为⊙D的切线,
∴PA⊥AD,
又∵AE⊥PD,
∴由射影定理可得 AE2=PEDE,即
又易知m<0,
∴可得m=﹣6,
又∵DA=DC得 DA2=DC2,即
把m=﹣6代入后可解得c=﹣6(另一解c=0舍去).
又∵AM∥BC,
,即.…
把c=﹣6代入,解得,(另一解舍去).
∴抛物线的解析式为
举一反三
将抛物线y=x2向左平移3个单位,在向下平移1个单位,则新抛物线的解析式为[     ]
A.y=(x﹣3)2+1
B.y=(x+3)2+1
C.y=(x﹣3)2﹣1
D.y=(x+3)2﹣1
题型:河北省期末题难度:| 查看答案
如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.
题型:河北省期末题难度:| 查看答案
某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AE=MN.准备在形如Rt△MEH的四个全等三角形内种植红色花草,在形如Rt△AEH的四个全等三角形内种植黄色花草,在正方形MNPQ内种植紫色花草,每种花草的价格如下表:
(1)S与x之间的函数关系式为S=(    )
(2)求W与x之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求EM的长.

题型:河北省期末题难度:| 查看答案
如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
题型:宁夏自治区竞赛题难度:| 查看答案
如图,已知直线y=x+2与两坐标轴分别交与A、B两点,抛物线y=x2+bx+c经过点A、B,P为直线AB上的一个动点,过P作x轴的垂线与抛物线交于C点.
(1)抛物线的解析式;
(2)设抛物线与x轴另一个交点为D,连接AD,证明:△ABD为直角三角形;
(3)在直线AB上是否存在一点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
题型:福建省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.