如图所示,在平面直角坐标系O中xy,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C。(1)求∠ACB的度数

如图所示,在平面直角坐标系O中xy,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C。(1)求∠ACB的度数

题型:湖南省中考真题难度:来源:
如图所示,在平面直角坐标系O中xy,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C。
(1)求∠ACB的度数;
(2)已知抛物线线y=ax2+bx+3过A、B两点,求抛物线的解析式;
(3)线段BC上是否存在点D,使△BOD为等腰三角形,若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由。
答案
解:(1) ∵以AB为直径的圆恰好经过点C ,
∴∠ACB=90°,(2) ∵△AOC∽△ABC,
∴OC2=AO·OB,
∵A(-,0),点C(0,3),
∴ AO=,OC=3,
∴ 32=OB,
∴OB=4,
∴B(4,0),
∴设抛物线的解析式为
把C点坐标代入得,解得
∴抛物线的解析式为
。 (3) 存在。分两种情况讨论:
①OD=OB,
D在OB的中垂线上,过D作DH⊥OB,垂足是H ,则H是OB 中点,
DH=OC,OH=OB,
∴D(2,);
②BD=BO,
过D作DG⊥OB,垂足是G,则OC=3,OB=BD=4,BC=5,CD=1,
∵DG∥CO,
∴OG∶OB=CD∶CB,
即OG∶4=1∶5,
∴OG=
DG∶CO=BD∶BC,
即DG∶3=4∶5,
∴DG=
∴D(),
综上所述,线段BC上存在点D,使△BOD为等腰三角形,点D的坐标为(2,),()。
举一反三
如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0)。
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由。
题型:湖南省中考真题难度:| 查看答案
如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点。
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E,当矩形CDEF为正方形时,求C点的坐标。
题型:湖南省中考真题难度:| 查看答案
九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式;
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m,为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴上,设矩形ABCD的周长为l求l的最大值;
II.如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由。

题型:湖南省中考真题难度:| 查看答案
某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是

[     ]

A.4米
B.3米
C.2米
D.1米
题型:湖南省中考真题难度:| 查看答案
已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,-)。
(1)求此二次函数的解析式;
(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积。注:二次函数y=x2+bx+c(≠0)的对称轴是直线x=-
题型:黑龙江省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.