如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B。(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在

如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B。(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在

题型:江苏中考真题难度:来源:
如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B。
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。
答案
解:(1)∵二次函数的图象与x轴的一个交点为A(4,0),
,解得
∴此二次函数关系式为:
∴令x=0,得y=3,
∴点B的坐标为B(0,3);
(2)在x轴的正半轴上存在点P(,0),使得△PAB是以AB为底的等腰三角形,理由如下:
设点P(x,0),x>0,使得BP=AP,
则根据右图和已知条件可得
x2+32=(4-x)2,解得x=
∴点P的坐标为P(,0),
即在x轴的正半轴上存在点P(,0),使得△PAB是以AB为底的等腰三角形。
举一反三
如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S。
(1)当t=1时,正方形EFGH的边长是____;当t=3时,正方形EFGH的边长是____;
(2)当0<t≤2时,求S与t的函数关系式;
(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?
题型:江苏中考真题难度:| 查看答案
如图,已知抛物线过点A(0,6),B(2,0),C(7,)。
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有,请求出所有符合条件的点P的坐标;若没有,请说明理由。
题型:湖南省中考真题难度:| 查看答案
如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A运动,Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动,作PM⊥PQ交CA于点M,过点P分别作BC、CA的垂线,垂足分别为E、F。
(1)求证:△PQE∽△PMF;
(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;
(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来。
题型:湖南省中考真题难度:| 查看答案
如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为(m,1-m)(m为常数)。
(1)求经过O、P、B三点的抛物线的解析式;
(2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;
(3)当P移动到点()时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标。
题型:湖南省中考真题难度:| 查看答案
如图所示,在平面直角坐标系O中xy,已知点A(-,0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C。
(1)求∠ACB的度数;
(2)已知抛物线线y=ax2+bx+3过A、B两点,求抛物线的解析式;
(3)线段BC上是否存在点D,使△BOD为等腰三角形,若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由。
题型:湖南省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.