已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C。(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C。(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐

题型:贵州省中考真题难度:来源:
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C。
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标。
答案
解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,

解得:

∴点C的坐标为:(0,3); (2)当△PAB是以AB为直角边的直角三角形,且∠PAB=90°,
∵A(3,0),B(4,1),
∴AM=BM=1,
∴∠BAM=45°,
∴∠DAO=45°,
∴AO=DO,
∵A点坐标为(3,0),
∴D点的坐标为:(0,3),
∴直线AD解析式为:y=kx+b,
将A,D分别代入得:
∴0=3k+b,b=3,
∴k=-1,
∴y=-x+3,
=-x+3,
∴x2-3x=0,
解得:x=0或3,
∴y=3或0(不合题意舍去),
∴P点坐标为(0,3),
当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,
由(1)得,FB=4,∠FBA=45°,
∴∠DBF=45°,∴DF=4,
∴D点坐标为:(0,5),B点坐标为:(4,1),
∴直线AD解析式为:y=kx+b,
将B,D分别代入得:
∴1=4k+b,b=5,
∴k=-1,
∴y=-x+5,
=-x+5,
∴x2-3x-4=0,
解得:x1=-1,x2=4,
∴y1=6,y2=1,
∴P点坐标为(-1,6),(4,-1),
∴点P的坐标为:(-1,6),(4,-1),(0,3);

(3)作EM⊥BO,
∵当OE∥AB时,△FEO面积最小,
∴∠EOM=45°,
∴MO=EM,
∵E在直线CA上,
∴E点坐标为(x,-x+3),
∴x=-x+3,解得:x=
∴E点坐标为()。
举一反三
如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8。
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E。
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG,随着点P的运动,正方形的大小、位置也随之改变,当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标。
题型:河南省中考真题难度:| 查看答案
手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化。
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?
(参考公式:当x=-时,二次函数y=ax2+bx+c(a≠0)有最小(大)值
题型:黑龙江省中考真题难度:| 查看答案
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数。
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<k)与此图象有两个公共点时,b的取值范围。
题型:北京中考真题难度:| 查看答案
ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图(1))。
(1)在图(1)中画图探究:
①当P1为射线CD上任意一点(P1不与C点重合)时,连接EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1,判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2,判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论;
(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=x,=y,求y与x之间的函数关系式,并写出自变量x的取值范围。
题型:北京中考真题难度:| 查看答案
将抛物线y=x2-2向上平移一个单位后,得到新的抛物线,那么新的抛物线的表达式为(    )。
题型:上海中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.