在等腰△ABC中,AB=AC=5,BC=6,动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC,将△AMN沿MN所在的直线折叠

在等腰△ABC中,AB=AC=5,BC=6,动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC,将△AMN沿MN所在的直线折叠

题型:宁夏自治区中考真题难度:来源:
在等腰△ABC中,AB=AC=5,BC=6,动点M、N分别在两腰AB、AC上(M不与A、B重合,N不与A、C重合),且MN∥BC,将△AMN沿MN所在的直线折叠,使点A的对应点为P。
(1)当MN为何值时,点P恰好落在BC上?
(2)当MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?
答案
解:(1)连接AP,交MN于O,
∵将△AMN沿MN所在的直线折叠,使点A的对应点为P,
∴OA=OP,AP⊥MN,AN=PN,AM=PM,
∵MN∥BC,
∴△AMN∽△ABC,AO⊥MN,

∵BC=6,
∴MN=3,
∴当MN=3时,点P恰好落在BC上; (2)过点A作AD⊥BC于D,交MN于O,
∵MN∥BC,
∴AO⊥MN,
∴△AMN∽△ABC,

∵AB=AC=5,BC=6,AD⊥BC,
∴∠ADB=90°,BD=BC=3,
∴AD=4,

∴AO=x,
∴S△AMN=
当AO≤AD时,
根据题意得:S△PMN=S△AMN
∴△MNP与等腰△ABC重叠部分的面积为S△AMN

∴当AO=AD时,即MN=BC=3时,y最小,最小值为3;
当AO>AD时, 连接AP交MN于O,则AO⊥MN,
∵MN∥BC,
∴AP⊥BC,△AMN∽△ABC,△PEF∽△PMN∽△AMN,

即:
∴AO=x,

∴EF=2x-6,OD=AD-AO=4-x,
∴y=S梯形MNFE=(EF+MN)·OD=×(2x-6+x)×(4x)=-(x-4)2+4,
∴当x=4时,y有最大值,最大值为4,
综上所述:当x=4时,y的值最大,最大值是4。
举一反三
西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是
[     ]
A.
B.
C.
D.
题型:青海省中考真题难度:| 查看答案
如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0),抛物线经过点A、C,与AB交于点D。
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S。
①求S关于m的函数表达式;
②当S最大时,在抛物线的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由。
题型:山东省中考真题难度:| 查看答案
已知一元二次方程x2-4x+3=0的两根是m,n且m<n,如图所示,若抛物线y=-x2+bx +c的图像经过点A(m,0)、B(0,n);
(1) 求抛物线的解析式;
(2) 若(1)中的抛物线与x轴的另一个交点为C,根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?
(3) 点P在线段OC上,作PE⊥x轴与抛物线交与点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标。
题型:青海省中考真题难度:| 查看答案
如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C。
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。
题型:山东省中考真题难度:| 查看答案
如图所示,四边形OABC是矩形,点A、C的坐标分别为(-3,0),(0,1),点D是线段BC上的动点(与端点B、C不重复),过点D作直线交折线OAB于点E。
(1)记△ODE的面积为S,求S与b的函数关系式:
(2)当点E在线段OA上时,且tan∠DEO=,若矩形OABC关于直线DE的对称图形为四边形,试探究四边形与矩形OABC的重叠部分的面积是否发生变化,若不交,求出该重叠部分的面积;若改变,请说明理由。
题型:山东省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.