如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若C
题型:不详难度:来源:
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF; (2)若CE=12,CF=5,求OC的长; (3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由. |
答案
解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,4=∠6。 ∵MN∥BC,∴∠1=∠5,3=∠6。 ∴∠1=∠2,∠3=∠4。∴EO=CO,FO=CO。 ∴OE=OF。 (2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°。 ∵CE=12,CF=5,∴。 ∴OC=EF=6.5。 (3)当点O在边AC上运动到AC中点时,四边形AECF是矩形。理由如下: 当O为AC的中点时,AO=CO, ∵EO=FO,∴四边形AECF是平行四边形。 ∵∠ECF=90°,∴平行四边形AECF是矩形。 |
解析
(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案。 (2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长。 (3)根据平行四边形的判定以及矩形的判定得出即可。 |
举一反三
如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是
|
如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于
|
如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于D,∠BEC=100°,则∠D的度数是
|
如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= 度.
|
命题“相等的角是对顶角”是 命题(填“真”或“假”). |
最新试题
热门考点