已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;   ②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥

已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;   ②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥

题型:不详难度:来源:
已知三条不同的直线a,b,c在同一平面内,下列四个命题:
①如果a∥b,a⊥c,那么b⊥c;   ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么b∥c.
其中正确的是       .(填写序号)
答案
①②④
解析

试题分析:1正确,因为垂直于同一条直线的两直线平行;2中正确,平行于同一条直线的两直线平行;3不正确,垂直于同一条直线的两直线平行,所以3正确;4因为垂直于同一条直线的两直线平行,所以正确。所以①②④正确
点评:本题属于对直线的基本位置关系的理解和运用
举一反三
如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.

(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
题型:不详难度:| 查看答案
【提出问题】
如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?
【探究过程】
小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?
如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.
以下是几位同学的对话:
A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.
B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.
(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)
【解决问题】
根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.
题型:不详难度:| 查看答案
如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=  
题型:不详难度:| 查看答案
如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线 FG交AB于点H,则结论正确的是
A.∠AFG=70°B.∠AFG>∠AGFC.∠FHB=100°D.∠CFH =2∠EFG

题型:不详难度:| 查看答案
已知:如图AB∥EF。说明:∠BCF=∠B+∠F

解:经过C画CD∥AB
∴∠B=∠1 (               )
∵AB∥EF
而CD∥AB(画图)
∴CD∥EF (                     )
∴∠F=_______(                )
∴∠1+∠2=∠B+∠F(                )
即∠BCF=∠B+∠F
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.