如下图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由。∵∠1=∠2,∠2=∠3,∠1=∠4( )∴∠3=
题型:贵州省月考题难度:来源:
如下图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由。 ∵∠1=∠2,∠2=∠3,∠1=∠4( ) ∴∠3=∠4( ) ∴( )∥( ),( ), ∴∠C=∠ABD( ) ∵∠C=∠D( ) ∴∠D=∠ABD( ) ∴DF∥AC( ) |
|
答案
解:对顶角的性质;等量代换;BD;CE;内错角相等两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行。 |
举一反三
如下图所示,直线AB∥CD,∠1=75 °,求∠2的度数。 |
|
如下图,由AB∥CD可以得到 |
|
[ ] |
A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4 |
如下图所示,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF= |
|
[ ] |
A.180° B.270 ° C.360 ° D.540 ° |
如下图,AB∥CD,CE平分∠ACD,若∠AEC=25 °,那么∠CAB的度数是( )。 |
|
如下图,AB∥CD,BC∥DE,则∠B与∠D的关系是( )。 |
|
最新试题
热门考点