如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。(1)连接AQ、CP交于点

如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。(1)连接AQ、CP交于点

题型:江苏模拟题难度:来源:
如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数。
            图1                                     图2
答案
解:(1)∠CMQ=60°不变,
∵等边三角形中,AB=AC,∠B=∠CAP=60°
又由条件得AP=BQ,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;
(2)设时间为t,则AP=BQ=t,PB=4-t
①当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ,得4-t=2t,t=
②当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP,
得t=2(4-t),t=
∴当第秒或第秒时,△PBQ为直角三角形;
(3)∠CMQ=120°不变,
∵在等边三角形中,AB=AC,∠B=∠CAP=60°
∴∠PBC=∠ACQ=120°,
又由条件得BP=CQ,
∴△PBC≌△ACQ(SAS)
∴∠BPC=∠MQC
又∵∠PCB=∠MCQ,
∴∠CMQ=∠PBC=180°-60°=120°。
举一反三
在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图所示):画线段AB,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧相交于点C,连结AC;再以点C为圆心,以AC长为半径画弧,交AC的延长线于D,连结DB,则△ABD就是直角三角形。
(1)请你说明其中的道理;
 (2)请利用上述方法作一个直角三角形,使其一个锐角为30°。(不写作法,保留作图痕迹)
题型:模拟题难度:| 查看答案
如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°,若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为
[     ]
A.
B.1
C.或1
D.或1或
题型:北京模拟题难度:| 查看答案
如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使△ABP为直角三角形,则满足条件的点P共有
[     ]
A.2个
B.3个
C.6个
D.7个
题型:河北省模拟题难度:| 查看答案
如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1, 0),则光线从A到B点经过的路线长是(    )。
题型:福建省中考真题难度:| 查看答案
如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E,求证:DE=BE。
题型:四川省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.