下列性质中,等腰三角形具有而直角三角形不一定具有的是 [ ]A.两边之和大于第三边 B.有一个角的平分线垂直于这个角的对边 C.有两个锐角的和等于90°
题型:河南省期末题难度:来源:
下列性质中,等腰三角形具有而直角三角形不一定具有的是 |
[ ] |
A.两边之和大于第三边 B.有一个角的平分线垂直于这个角的对边 C.有两个锐角的和等于90° D.内角和等于180° |
答案
B |
举一反三
两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连结BD,取BD的中点M,连结ME,MC,试判断△EMC的形状,并说明理由。 |
|
如图,在等腰梯形ABCD中,AB∥CD,DC=3cm,∠A=60°,BD平分∠ABC,则这个梯形的周长 |
|
[ ] |
A.21cm B.18cm C.15cm D.12cm |
直角三角形的两直角边长分别是3cm,4cm,则斜边上的中线长为 |
[ ] |
A.5cm B.2.4cm C.2.5cm D.5cm或cm |
如图,在△ABC中,∠C=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为( )。 |
|
如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s。 (1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数; (2)何时△PBQ是直角三角形? (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数。 |
图1 图2 |
最新试题
热门考点