已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠

已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠

题型:江苏省期末题难度:来源:
已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F。
(1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系。
(2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由。
(3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系。


答案
解:
(1)AE+CF=EF;
(2)成立。
理由是:延长EA到G,使AG=FC,
∵GA=FC,∠GAB=∠FCB=90°,AB=CB,
∴△GAB≌△FCB(SAS),
∴∠GBA=∠FBC,GB=FB,AG=CF,
∵∠FBC+∠FBA=60°,
∴∠GBA+∠FBA=60°,
即:∠GBF=60°
∵∠EBF=30°,
∴∠GBE=30°,
∵GB=FB,∠GBE=∠FBE,BE=BE,
∴△GBE≌△FBE,
∴GE=FE
∵GE=AG+AE,
∴EF=AE+CF;
(3)图3:AE﹣CF=EF;图4:AE+EF=CF。
举一反三
如图,已知AB∥CF,E是DF的中点,若AB=9cm,CF=6cm,则BD=﹙    ﹚cm.
题型:江苏省期末题难度:| 查看答案
如图,已知点C是∠AOB平分线上的点,点P、P分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′0C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:﹙    ﹚.
题型:江苏省期末题难度:| 查看答案
如图,梯形ABCD中,AD∥BC,点E是CD的中点,BE的延长线与AD的延长线交于点F.(1)△BCE和△FDE全等吗?为什么?
(2)连接BD,CF,则△BDE和△FCE全等吗?为什么?
(3)BD与CF有何关系?说明理由.
题型:江苏省期末题难度:| 查看答案
操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗?试说明理由.
题型:江苏省期末题难度:| 查看答案
如图,一艘轮船沿AC方向航行,轮船在点A时测得航线两侧的两个灯塔与航线的夹角相等,当轮船到达点B时测得这两个灯塔与航线的夹角仍然相等,这时轮船与两个灯塔的距离是否相等?为什么?
题型:江苏省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.