操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边

操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.归纳结论:如果一个三角形有两条边

题型:江苏省期末题难度:来源:
操作实验:
如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.所以△ABD≌△ACD,所以∠B=∠C.
归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.
根据上述内容,回答下列问题:
思考验证:如图(4),在△ABC中,AB=AC.试说明∠B=∠C的理由;
探究应用:如图(5),CB⊥AB,垂足为A,DA⊥AB,垂足为B.E为AB的中点,AB=BC,CE⊥BD.
(1)BE与AD是否相等,为什么?
(2)小明认为AC是线段DE的垂直平分线,你认为对吗?说说你的理由;
(3)∠DBC与∠DCB相等吗?试说明理由.
答案
解:思考验证:

过A点作AD⊥BC于D,
∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,
∴△ABD≌△ACD(HL),
∴∠B=∠C;
探究应用:
(1)说明:因为CB⊥AB,
∴∠CBA=90°.
∴∠1+∠2=90°.
∵DA⊥AB,
∴∠DAB=90°.
∴∠ADB+∠1=90°.
∴∠ADB=∠2.
在△ADB和△BEC中
∴△DAB≌△EBC(ASA).
∴DA=BE.
(2)∵E是AB中点,
∴AE=BE.
∵AD=BE,
∴AE=AD.
在△ABC中,因为AB=AC,
∴∠BAC=∠BCA.
∵AD∥BC,
∴∠DAC=∠BCA.
∴∠BAC=∠DAC.
在△ADC和△AEC中,
∴△ADC≌△AEC(SAS).
∴DC=CE.
∴C在线段DE的垂直平分线上.
∵AD=AE,
∴A在线段DE的垂直平分线上.
∴AC垂直平分DE.
(3)∵AC是线段DE的垂直平分线,
∴CD=CE.
∵△ADB≌△BEC,
∴DB=CE.
∴CD=BD.
∴∠DBC=∠DCB.
举一反三
如图,一艘轮船沿AC方向航行,轮船在点A时测得航线两侧的两个灯塔与航线的夹角相等,当轮船到达点B时测得这两个灯塔与航线的夹角仍然相等,这时轮船与两个灯塔的距离是否相等?为什么?
题型:江苏省期末题难度:| 查看答案
(1)问题1:在数学课本中我们研究过这样一道题目:如图1,∠ACB=90°,AC=BC,BE⊥MN,AD⊥MN,垂足分别为E、D.图中哪条线段与AD相等?并说明理由.
(2)问题2:试问在这种情况下线段DE、AD、BE具有怎样的等量关系?请写出来,不需要说明理由.
(3)问题3:当直线CE绕点C旋转到图2中直线MN的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并说明理由.
题型:江苏省期末题难度:| 查看答案
如图,已知AB∥CF,E是DF的中点,若AB=9cm,CF=6cm,则BD=(    )cm.
题型:江苏省期末题难度:| 查看答案
如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号(     )
题型:江苏省期末题难度:| 查看答案
如图,已知∠AOB=120°,OM平分∠AOB,将正三角形的一个顶点P放在射线OM上,两边分别与OA、OB交于点C、D.
(1)如图①若边PC和OA垂直,那么线段PC和PD相等吗?为什么?
(2)如图②将正三角形绕P点转过一角度,设两边与OA、OB分别交于C",D",那么线段PC"和PD"相等吗?为什么?
题型:江苏省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.