已知:如图BC∥EF,BC=EF,AB=DE;说明AC与EF相等. 解:∵BC∥EF(已知)∴∠ABC=∠_________(_________)在△ABC和△
题型:重庆市月考题难度:来源:
已知:如图BC∥EF,BC=EF,AB=DE;说明AC与EF相等. 解:∵BC∥EF(已知) ∴∠ABC=∠_________(_________) 在△ABC和△DEF中 _______ _______ _______ ∴△ABC≌_________(_________) ∴AC=DF (_________). |
|
答案
解:∵BC∥EF(已知) ∴∠ABC=∠DEF ( 两直线平行,同位角相等) 在△ABC和△DEF中 ∵AB=DE, ∠ABC=∠DEF, BC=EF ∴△ABC≌△DEF ( SAS) ∴AC=DF (对应边相等). 故答案为:∠DEF; ( 两直线平行,同位角相等); AB=DE, ∠ABC=∠DEF, BC=EF; △DEF ( SAS); (对应边相等). |
举一反三
小明站在池塘边的A点处,池塘的对面(小明的正北方向)B处有一棵小树,他想知道这棵树距离他有多远,于是他向正东方向走了10步到达电线杆C旁,接着再往前走了10步,到达D处,然后他改向正南方向继续行走,当小明看到电线杆C、小树B与自己现处的位置E在一条直线上时,他共走了45步. (1)根据题意,画出示意图; (2)如果小明一步大约40厘米,估算出小明在点A处时小树与他的距离,并说明理由. |
|
如图,已知△ABC≌△ADC,若∠BAC=60°,∠ACD=20°,则∠D=( )°. |
|
如图,点A、D、B、E在同一直线上,△ABC≌△DEF,AB=6 ,AE=10 ,则DB等于 |
|
[ ] |
A.2 B.2.5 C.3 D.4 |
如下图,点D、E分别是等边三角形△ABC边AB、BC上的点,且BD=CE,则∠AFE=( )。 |
|
如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,那么在结论: ①△AOD≌△BOC ;②△APC≌△BPD;③点P在∠AOB的平分线上。其中正确的是 |
|
[ ] |
A.只有① B.只有② C.只有①② D.①②③ |
最新试题
热门考点