试题分析:证△COA≌△DOB,推出等腰直角三角形AOB,求出AB=OA,得出要使AB最小,只要OA取最小值即可,当OA⊥CD时,OA最小,求出OA的值即可.
∵四边形CDEF是正方形, ∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD, ∵AO⊥OB, ∴∠AOB=90°, ∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°, ∴∠COA=∠DOB, ∴△COA≌△DOB, ∴OA=OB, ∵∠AOB=90°, ∴△AOB是等腰直角三角形, 由勾股定理得, 要使AB最小,只要OA取最小值即可, 根据垂线段最短,OA⊥CD时,OA最小, ∵正方形CDEF, ∴FC⊥CD,OD=OF, ∴CA=DA, ∴ 即. 点评:解题关键是求出OA和得出OA⊥CD时OA最小,题目具有一定的代表性,有一定的难度. |