(1)答:四边形EFGH的形状是正方形. (2)解:①∠HAE=90°+a, 在平行四边形ABCD中AB∥CD, ∴∠BAD=180°﹣∠ADC=180°﹣a, ∵△HAD和△EAB是等腰直角三角形, ∴∠HAD=∠EAB=45°, ∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+a, 答:用含α的代数式表示∠HAE是90°+a. ②证明:∵△AEB和△DGC是等腰直角三角形, ∴AE=AB,DC=CD, 在平行四边形ABCD中,AB=CD, ∴AE=DG, ∵△HAD和△GDC是等腰直角三角形, ∴∠HDA=∠CDG=45°, ∴∠HDG=∠HDA+∠ADC+∠CDG=90°+a=∠HAE, ∵△HAD是等腰直角三角形, ∴HA=HD, ∴△HAE≌△HDC, ∴HE=HG. ③答:四边形EFGH是正方形, 理由是:由②同理可得:GH=GF,FG=FE, ∵HE=HG, ∴GH=GF=EF=HE, ∴四边形EFGH是菱形, ∵△HAE≌△HDG, ∴∠DHG=∠AHE, ∵∠AHD=∠AHG+∠DHG=90°, ∴∠EHG=∠AHG+∠AHE=90°, ∴四边形EFGH是正方形. |