解:(1)证明;①∵AC⊥x轴,AE⊥y轴,∴四边形AEOC为矩形, ∵BF⊥x轴,BD⊥y轴,∴四边形BDOF为矩形, ∵AC⊥x轴,BD⊥y轴,∴四边形AEDK,DCCK,CFBK均为矩形, ∵OC=x1,AC=y1,x1·y1=k,∴S矩形AEOC=OC·AC=x1·y1=k ∵OF=x2,FB=y2,x2·y2=k,∴S矩形BDOF=OF·FB=x2·y2=k, ∴S矩形AEOC=S矩形BDOF,S矩形AEDK=S矩形AEOC-S矩形CFBK=S矩形BDOF=S矩形DOCK, S矩形AEDK=S矩形CFBK; ②由①知S矩形AEDK=S矩形CFBK,AK·DK=BK·CK, ∴=,∵∠AKB=∠CKD=90°,∴△AKB∽△CKD,∴∠CDK=∠ABK,∴AB∥CD, ∵AC∥y轴,∴四边形ACDN是平行四边形,∴AN=CD同理BM=CD,∴AN=BM; (2)解:AN与BM仍然相等,∵S矩形AEDK=S矩形AEOC+S矩形ODKC, S矩形BKCF=S矩形BDOF+S矩形ODKC, 又∵S矩形AEOC=S矩形BDOF=k,∴S矩形AEDK=S矩形BKCF,∴AK·DK=BK·CK, ∴CK/AK=DK/BK,∴∠K=∠K,∴△CDK∽△ABK, ∴∠CDK=∠ABK,∴AB∥CD, ∵AC∥y轴,∴四边形ANDC是平行四边形,∴AN=CD,同理BM=CD,∴AN=BM。 |