如图所示,在△ABC中,∠ABC=90°,BD是△ABC的中线,延长BD到E,使DE=BD,连接AE,CE,求证:四边形ABCE是矩形.
题型:不详难度:来源:
如图所示,在△ABC中,∠ABC=90°,BD是△ABC的中线,延长BD到E,使DE=BD,连接AE,CE,求证:四边形ABCE是矩形. |
答案
证明:已知BD是△ABC的中线, ∴DE=BD,AD=CD, ∴四边形ABCE是平行四边形. 又因为∠ABC=90°, 故四边形ABCE是矩形. |
举一反三
如图,AD平行且等于BC,则四边形ABCD是______,又对角线AC,BD交于点O,若∠1=∠2,则四边形ABCD是______. |
已知:如图,在矩形ABCD中,AE⊥BD于E,对角线AC、BD相交于点O,且BE:ED=1:3,AB=6cm,则AC的长度为______cm. |
如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD交于O,且BE:ED=1:3,AD=6cm,则AE=______cm. |
如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,那么MN⊥BD成立吗?试说明理由. |
(创新探究题)如图所示,已知E,F分别是矩形ABCD的边BC,CD上两点,连接AE,BF,请你再从下面四个反映图中边角关系的式子:①AB=BC;②BE=CF;③AE=BF;④∠AEB=∠BFC中选出两个作为已知条件,一个作为结论,组成一个命题,并证明这个命题是否正确(只需写出一种情况). |
最新试题
热门考点