解:(1)证明:∵DE∥AB,AE∥BC, ∴四边形ABDE是平行四边形, ∴AE∥BD且AE=BD, 又∵AD是边BC上的中线, ∴BD=CD, ∴四边形ADCE是平行四边形 ∴AD=EC, 又∵∠BAC=90°,AD上斜边BC上的中线, ∴AD=BD=CD 又∵四边形ADCE是平行四边形 ∴四边形ADCE是菱形; (2)∵四边形ADCE是菱形, ∴AO=CO,∠AOD=90° 又∵BD=CD, ∴OD是△ABC的中位线,则OD=AB, ∵AB=AO, ∴OD=AO, ∴在Rt△ABC中,tan∠OAD=. |