在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,如果四边形EFGH为菱形,那么四边形ABCD是( )(只要写出一种即可).
题型:湖南省月考题难度:来源:
在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,如果四边形EFGH为菱形,那么四边形ABCD是( )(只要写出一种即可). |
答案
只要是对角线相等的四边形均符合要求.如:正方形、矩形、等腰梯形等(答案不唯一) |
举一反三
如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上,且BE=BO,则∠EOA=( )度. |
|
如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由. |
|
如图,已知:梯形ABCD中,AD∥BC,E为AC的中点,连接DE并延长交BC于点F,连接AF. (1)求证:AD=CF; (2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD成为菱形,并说明理由. |
|
如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC. (1)求证:AD=EC; (2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形. |
|
如图,△ABC中,∠BAC为直角,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC. (1)求证:四边形ADCE是菱形; (2)若AB=AO,求tan∠OAD的值. |
|
最新试题
热门考点