(1)证明:∵四边形ABCD是正方形, ∴BC=AB,(1分) ∵∠CBP=∠ABE,BP=BE, ∴△CBP≌△ABE.
(2)证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP=∠CBP+∠ABP=90°, ∴PB⊥BE. (1)、(2)两小题可以一起证明. 证明:∵∠CBP=∠ABE, ∴∠PBE=∠ABE+∠ABP(1分) =∠CBP+∠ABP =90°(2分) ∴PB⊥BE.(3分) 以B为旋转中心,把△CBP按顺时针方向旋转90°.(4分) ∵BC=AB,∠CBA=∠PBE=90°,BE=BP.(5分) ∴△CBP与△ABE重合, ∴△CBP≌△ABE.(6分)
(3)连接PE, ∵BE=BP,∠PBE=90°, ∴∠BPE=45°,(7分) 设AP为k,则BP=BE=2k, ∴PE2=8k2,(8分) ∴PE=2k, ∵∠BPA=135°,∠BPE=45°, ∴∠APE=90°,(9分) ∴AE=3k, 在直角△APE中:cos∠PAE==.(10分) |