试题分析:(1)根据等腰直角三角形的性质得出∠ACB=∠BAC=45°∠ADE=∠EBC=∠EDC=90°,推出BM=DM,BM=CM,DM=CM,推出∠BCM=∠MBC,∠ACM=∠MDC,求出∠BMD=2∠BCM+2∠ACM=2∠BCA=90°即可. (2)延长ED交AC于F,求出DM=FC,DM∥FC,∠DEM=NCM,根据ASA推出△EDM≌△CNM,推出DM=BM即可. (3)过点C作CF∥ED,与DM的延长线交于点F,连接BF,推出△MDE≌△MFC,求出DM=FM,DE=FC,作AN⊥EC于点N,证△BCF≌△BAD,推出BF=BD,∠DBA=∠CBF,求出∠DBF=90°,即可得出答案. 试题解析:(1)证明:∵△ABC和△ADE都是等腰直角三角形, ∴∠ACB=∠BAC=45°∠ADE=∠EBC=∠EDC=90°, ∵点M为BC的中点, ∴BM=EC,DM=EC, ∴BM=DM,BM=CM,DM=CM, ∴∠BCM=∠MBC,∠DCM=∠MDC, ∴∠BME=∠BCM+∠MBC=2∠BCE, 同理∠DME=2∠ACM, ∴∠BMD=2∠BCM+2∠ACM=2∠BCA=2×45°=90° ∴△BMD是等腰直角三角形. (2)如图2,△BDM是等腰直角三角形,
理由是:延长ED交AC于F, ∵△ADE和△ABC是等腰直角三角形, ∴∠BAC=∠EAD=45°, ∵AD⊥ED, ∴ED=DF, ∵M为EC中点, ∴EM=MC, ∴DM=FC,DM∥FC, ∴∠BDN=∠BND=∠BAC=45°, ∵ED⊥AB,BC⊥AB, ∴ED∥BC, ∴∠DEM=NCM, 在△EDM和△CNM中
∴△EDM≌△CNM(ASA), ∴DM=MN, ∴BM⊥DN, ∴△BMD是等腰直角三角形. (3) △BDM是等腰直角三角形, 理由是:如图:过点C作CF∥ED,与DM的延长线交于点F,连接BF,
可证得△MDE≌△MFC, ∴DM=FM,DE=FC, ∴AD=ED=FC, 作AN⊥EC于点N, 由已知∠ADE=90°,∠ABC=90°, 可证得∠DEN=∠DAN,∠NAB=∠BCM, ∵CF∥ED, ∴∠DEN=∠FCM, ∴∠BCF=∠BCM+∠FCM=∠NAB+∠DEN=∠NAB+∠DAN=∠BAD, ∴△BCF≌△BAD, ∴BF=BD,∠DBA=∠CBF, ∴∠DBF=∠DBA+∠ABF=∠CBF+∠ABF=∠ABC=90°, ∴△DBF是等腰直角三角形, ∵点M是DF的中点, 则△BMD是等腰直角三角形, 考点: 1.全等三角形的判定与性质;2.直角三角形斜边上的中线;3.等腰直角三角形. |