如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连结AE.求证:(1)△ACE≌△BCD;(2)AE∥BC.

如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连结AE.求证:(1)△ACE≌△BCD;(2)AE∥BC.

题型:不详难度:来源:
如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连结AE.

求证:(1)△ACE≌△BCD;
(2)AE∥BC.
答案
(1)根据等边三角形的性质可得∠ACB=∠DCE=60°,AC=BC,DC=EC,再由∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD可得∠BCD=∠ACE,即可证得结论;
(2)根据全等三角形的性质可得∠ABC=∠CAE=60°,再结合∠ACB=60°可得∠CAE=∠ACB,从而证得结论.
解析

试题分析:(1)∵△ABC与△EDC是等边三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC
又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,
∴∠BCD=∠ACE.
∴△ACE≌△BCD(SAS);
(2)∵ACE≌△BCD,
∴∠ABC=∠CAE=60°
又∵∠ACB=60°,
∴∠CAE=∠ACB
∴ AE∥BC.
点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.
举一反三
如图,把一个等腰直角三角板放置于矩形上,三角板的一个角的顶点放在处, 且直角边在矩形内部绕点旋转,在旋转过程中交于点.
(1)如图1,试问线段的有何数量关系?并说明理由;
(2)如图1,是否存在为等腰三角形,若存在,求出的长,若不存在,说明理由.
继续以下探索:
(3)如图2,以为边在矩形内部作正方形,直角边所在的直线交,交.设写出关于的函数关系式.
题型:不详难度:| 查看答案
下列各组数中不能作为直角三角形的三边长的是(     )
A.B.
C.D.

题型:不详难度:| 查看答案
如图,学校有一块长方形花圃,有极少数同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了     米,却踩伤了花草.
题型:不详难度:| 查看答案
如图,在直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,点F是CD边上一点,将纸片沿BF折叠,点C落在E点,使直线BE经过点D,若BF=CF=8,则AD的长为         .
题型:不详难度:| 查看答案
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE="4" cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐      
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,
求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.