如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于_____________

如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于_____________

题型:不详难度:来源:
如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于_____________

答案
.
解析

试题分析:根据中位线的性质得出EF∥BD,且等于BD,进而得出△BDC是直角三角形,求出即可.
试题解析:连接BD,则EF是△ABD的中位线,

∴BD=4,在△BCD中,
∵32+42=52
∴△BCD是以D点为直角顶点的直角三角形,
∴tanC=
考点: 1.三角形中位线定理;2.勾股定理的逆定理;3.锐角三角函数的定义.
举一反三
某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:
课题
测量教学楼高度
方案


 
图示


测得数据
CD=6.9m,∠ACG=22°,∠BCG=13°,
EF=10m,∠AEB=32°,∠AFB=43°
参考数据
sin22°≈0.37,cos22°≈0.93,
tan22°≈0.40
sin13°≈0.22,cos13°≈0.97
tan13°≈0.23
sin32°≈0.53,cos32°≈0.85,tan32°≈0.62
sin43°≈0.68,cos43°≈0.73,tan43°≈0.93
请你选择其中的一种方法,求教学楼的高度(结果保留整数)
题型:不详难度:| 查看答案
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).

题型:不详难度:| 查看答案
如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)

题型:不详难度:| 查看答案
某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1:1.8改为1:2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC的长.

题型:不详难度:| 查看答案
如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.