(1)证明:连接OC。
∵CD是⊙O的切线,∴CD⊥OC。 又∵CD⊥AE,∴OC∥AE。∴∠1=∠3。 ∵OC=OA,∴∠2=∠3。 ∴∠1=∠2,即∠EAC=∠CAB。 (2)解:①连接BC。
∵AB是⊙O的直径,CD⊥AE于点D, ∴∠ACB=∠ADC=90°。 ∵∠1=∠2,∴△ACD∽△ABC。∴。 ∵AC2=AD2+CD2=42+82=80, ∴AB==10。 ∴⊙O的半径为10÷2=5。 ②连接CF与BF。
∵四边形ABCF是⊙O的内接四边形, ∴∠ABC+∠AFC=180°。 ∵∠DFC+∠AFC=180°,∴∠DFC=∠ABC。 ∵∠2+∠ABC=90°, ∠DFC+∠DCF=90°, ∴∠2=∠DCF。 ∵∠1=∠2,∴∠1=∠DCF。 ∵∠CDF=∠CDF,∴△DCF∽△DAC。∴。∴DF==2。 ∴AF=AD-DF=8-2=6。 ∵AB是⊙O的直径,∴∠BFA=90°。 ∴BF==8。∴tan∠BAD=。 (1)连接OC,由CD是⊙O的切线,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根据平行线的性质与等腰三角形的性质,即可证得∠EAC=∠CAB。 (2)①连接BC,易证得△ACD∽△ABC,根据相似三角形的对应边成比例,即可求得AB的长, 从而可得⊙O的半径长。 ②连接CF与BF.由四边形ABCF是⊙O的内接四边形,易证得△DCF∽△DAC,然后根据 相似三角形的对应边成比例,求得AF的长,又由AB是⊙O的直径,即可得∠BFA是直角,利用勾股定理求得BF的长,即可求得tan∠BAE的值。 |