(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知

(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知

题型:不详难度:来源:
(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙
O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,
B两点的坐标分别为A(0,2),B(-2,0).
(1)求C,D两点的坐标.
(2)求证:EF为⊙O1的切线.
(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.
答案
(1)连结DE,∵CD是⊙O1的直径,

∴DE⊥BC,
∴四边形ADEO为矩形.
∴OE=AD=2,DE=AO=2.
在等腰梯形ABCD中,DC=AB.
∴CE=BO=2,CO=4.
∴C(4,0),D(2,2).
(2)连结O1E,在⊙O1中,O1E=O1C,
∠O1EC=∠O1CE,
在等腰梯形ABCD中,∠ABC=∠DCB.
∴O1E∥AB,
又∵EF⊥AB,
∴O1E⊥EF.
∵E在AB上,
∴EF为⊙O1的切线
(3)解法一:存在满足条件的点P.
如右图,过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,

在矩形OMPN中,ON=PM,
设ON=x,则PM=PC=x,CN=4-x,
tan∠ABO=.
∴∠ABO=60°,
∴∠PCN =∠ABO =60°.
在Rt△PCN中,
cos∠PCN =
,
∴x=.
∴PN=CN·tan∠PCN=(4-=.
∴满足条件的P点的坐标为().
解法二:存在满足条件的点P,
如右图,在Rt△AOB中,AB=.
过P作PM⊥y轴于M,作PN⊥x轴于N,依题意得PC=PM,
在矩形OMPN中,ON=PM,
设ON=x,则PM=PC=x,CN=4-x,
∵∠PCN=∠ABO,∠PCN=∠AOB=90°.
∴△PNC∽△AOB,
,即.
解得x=.
又由△PNC∽△AOB,得

∴PN=.
∴满足条件的P点的坐标为().
解析

举一反三
(2011•重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于(  )
           
题型:不详难度:| 查看答案
(2011•重庆)在半径为的圆中,45°的圆心角所对的弧长等于_________
题型:不详难度:| 查看答案
如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,CE=1,DE
=3,则⊙O的半径是       

题型:不详难度:| 查看答案
如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径0C为2,则弦BC的长为(  )
A.1
B.
C.2
D.

题型:不详难度:| 查看答案
如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是________。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.