如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。(1)求∠B的大小:(2)已知圆心0到BD的距离为3,求AD的长。

如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。(1)求∠B的大小:(2)已知圆心0到BD的距离为3,求AD的长。

题型:不详难度:来源:
如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。

(1)求∠B的大小:
(2)已知圆心0到BD的距离为3,求AD的长。
答案
(1)证明略
(2)AD=2OE=6
解析

分析:(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;
(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.
解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,
∴∠CDB=40°;
又∵∠APD=65°,
∴∠BPD=115°;
∴在△BPD中,
∴∠B=180°-∠CDB-∠BPD=25°;
(2)过点O作OE⊥BD于点E,则OE=3.
∵AB是直径,
∴AD⊥BD(直径所对的圆周角是直角);
∴OE∥AD;
又∵O是AB的中点,
∴OE是△ABD的中位线,
∴AD=2OE=6.
举一反三
(2011•金华)如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若tan∠OPB=,求弦AB的长;
(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为_________,能构成等腰梯形的四个点为____________________或___________
题型:不详难度:| 查看答案
(2011?衢州)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是(  )
A.a2﹣πB.(4﹣π)a2
C.πD.4﹣π

题型:不详难度:| 查看答案
(2011?衢州)木工师傅可以用角尺测量并计算出圆的半径r,用角尺的较短边紧靠⊙O,并使较长边与⊙O相切于点C,假设角尺的较长边足够长,角尺的顶点为B,较短边AB=8cm,若读得BC长为acm,则用含a的代数式表示r为_________________________
题型:不详难度:| 查看答案
(2011山东烟台,12,4分)如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7……叫做“正六边形的渐开线”,其中,……的圆心依次按点ABCDEF循环,其弧长分别记为l1l2l3l4l5l6,…….当AB=1时,l2 011等于(    )
A.B.C.D.

题型:不详难度:| 查看答案
(2011山东烟台,16,4分)如图,△ABC的外心坐标是__________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.