解:(1)∵AO1是⊙O2的切线,∴O1A⊥AO2∴∠O2AB+∠BAO1=90° 又O2A=O2C,O1A=O1B,∴∠O2CB=∠O2AB,∠O2BC=∠ABO1=∠BAO1 ∴∠O2CB+∠O2BC=∠O2AB+∠BAO1=90°,∴O2C⊥O2B,即O2C⊥O1O2 (2)延长O2O1交⊙O1于点D,连结AD.
∵BD是⊙O1直径,∴∠BAD=90° 又由(1)可知∠BO2C=90° ∴∠BAD=∠BO2C,又∠ABD=∠O2BC ∴△O2BC∽△ABD ∴ ∴AB·BC=O2B·BD 又BD=2BO1 ∴AB·BC=2O2B·BO1 (3)由(2)证可知∠D=∠C=∠O2AB,即∠D=∠O2AB,又∠AO2B=∠DO2A ∴△AO2B∽△DO2A ∴ ∴AO22=O2B·O2D ∵O2C=O2A ∴O2C2=O2B·O2D① 又由(2)AB·BC=O2B·BD② 由①-②得,O2C2-AB·BC= O2B2 即42-12=O1B2 ∴O2B=2,又O2B·BD=AB·BC=12 ∴BD=6,∴2AO1=BD="6 " ∴AO1=3 |