在一个不透明的口袋里装有分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个
题型:不详难度:来源:
在一个不透明的口袋里装有分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片. (1)请你用列表或画树状图的方法,表示出所有可能出现的结果; (2)小红和小莉做游戏,制定了两个游戏规则: 规则1:若两次摸出的数字,至少有一次是“6”,小红赢;否则,小莉赢. 规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢. 小红想要在游戏中获胜机会更大些,她会选择哪一条规则,并说明理由. |
答案
(1)列表或画树状图见解析;(2)规则1,理由见解析. |
解析
试题分析:(1)利用列表法或者画出树状图,然后写出所有的可能情况即可; (2)分别求出“至少有一次是“6””和“卡片上的数字是球上数字的整数倍”的概率,小红选择自己获胜的概率比小莉获胜的概率大的一种规则即可在游戏中获胜. 试题解析:(1)列表如下:
画树状图如下:
共有9种可能,分别是(2,6),(2,7),(2,8),(4,6),(4,7),(4,8),(6,6),(6,7),(6,8); (2)从图表或树状图可知,至少有一次是“6”的情况有5种, 所以,小红赢的概率是P(至少有一次是“6”)=,小莉赢的概率是, ∵>, ∴此规则小红获胜的概率大, 卡片上的数字是球上数字的整数倍的有:(2,6)(2,8)(4,8)(6,6)共4种情况, 所以,小红赢的概率是P(卡片上的数字是球上数字的整数倍)=,小莉赢的概率是, ∵>, ∴此规则小莉获胜的概率大, ∴小红要想在游戏中获胜,她应该选择规则1. 考点: 列表法或画树状图法. |
举一反三
“双十一”期间,潘集某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元,就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券(指针若指向分界线算是指向右边扇形区域).某顾客当天消费240元,转了两次转盘.
(1)该顾客最少可得 元购物券,最多可得 元购物券; (2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率. |
一个不透明的袋子中装有2个红球,3个白球,4个黄球,这些球除颜色外没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率是( ). |
将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上. (1)若随机地抽取一张,则抽到数字恰好为1的概率是 ; (2)请你通过列表或画树状图分析:先随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求组成的两位数能被4整除的概率. |
在一个不透明的口袋中装有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸出一个小球然后放回,再随机地摸出一个小球. (1)两次摸出的小球的标号不同的概率为 ; (2)求两次摸出小球的标号之积是3的倍数的概率(采用树形图或列表法). |
从连续正整数10-99中选出一个数,其中每个数被选出的机会相等,球选出的数其十位数字与各位数字的和为9的概率是( ) |
最新试题
热门考点