把x1+x2=a1,x2+x3=a2,x3+x1=a3相加得 2(x1+x2+x3)=a1+a2+a3, ∴x1+x2+x3=, 分别减去x1+x2=a1,x2+x3=a2,x3+x1=a3, 得:x1=, x2=, x3=, ∵x2-x1==a2-a3,a2>a3, ∴x2>x1, ∵x1-x3==a1-a2,a1>a2, ∴x1>x3, 那么将x1,x2,x3从大到小排起来应该是x2>x1>x3. 另法:x1设为x,把x2设为y,把x3设为z;把a1设为a,把a2设为b,把a3设为c.依题意得: ∵x+y=a, y+z=b, z+x=c, 又∵a>b>c, ∴x+y>x+z, ∴x>z, ∵y+z>z+x, ∴y>x, ∵x+y>z+x, ∴y>z, ∴y>x>z, 即x2>x1>x3. |